MEST - Assignment 5

Due date: 12/05/2024
(For each solution, show your work through a set of important steps.)

1. For the hydrogen atom, plot the radial wavefunction for (i) the exact $1 s \mathrm{AO}$, and (ii) approximate AOs using CGTOs (a)STO-3G and (b) STO-6G. Comment on the relative accuracy of STO-6G and STO-3G basis function.
2. For the $\mathrm{HMn}(\mathrm{CO})_{5}$ molecule, enumerate the total number of CGTOs that constitute the $6-31 \mathrm{G}$ and STO-3G basis sets. Try to answer this without and with the help of the basis-set website (https://www.basissetexchange.org/). How many spatial MOs will be occupied and how many will be empty?
3. For NH_{3} molecule, the five lowest-energy spatial MOs in terms of AOs are:

$$
\begin{gathered}
\psi_{1}=0.99339 \phi_{N_{1 s}}+0.03182 \phi_{N_{2 s}}-0.00440 \phi_{N_{2 p_{z}}}-0.00658\left(\phi_{H 1_{1 s}}+\phi_{H 2_{1 s}}+\phi_{H 3_{1 s}}\right) \\
\psi_{2}=-0.22026 \phi_{N_{1 s}}+0.73925 \phi_{N_{2 s}}-0.12153 \phi_{N_{2 p_{z}}}+0.16182\left(\phi_{H 1_{1 s}}+\phi_{H 2_{1 s}}+\phi_{H 3_{1 s}}\right) \\
\psi_{3}=0.58945 \phi_{N_{2 p_{x}}}+0.42798\left(\phi_{H 2_{1 s}}-\phi_{H 3_{1 s}}\right) \\
\psi_{4}=0.58945 \phi_{N_{2 p_{y}}}+0.49419 \phi_{H 1_{1 s}}-0.24710\left(\phi_{H 2_{1 s}}+\phi_{H 3_{1 s}}\right) \\
\psi_{1}=-0.08049 \phi_{N_{1 s}}+0.40462 \phi_{N_{2 s}}+0.91261 \phi_{N_{2 p_{z}}}-0.11245\left(\phi_{H 1_{1 s}}+\phi_{H 2_{1 s}}+\phi_{H 3_{1 s}}\right)
\end{gathered}
$$

For this configuration, calculate the individual AO electronic population, Gross electronic population on each atom, and the net charges. All AOs are normalized while the overlap integrals are given by:

$$
\begin{gathered}
\left\langle\phi_{N_{1 s}} \mid \phi_{N_{2 s}}\right\rangle=0.235038,\left\langle\phi_{N_{2 p_{y}}} \mid \phi_{H 1_{1 s}}\right\rangle=0.411956 \\
\left\langle\phi_{N_{1 s}} \mid \phi_{H 1_{1 s}}\right\rangle=\left\langle\phi_{N_{1 s}} \mid \phi_{H 2_{1 s}}\right\rangle=\left\langle\phi_{N_{1 s}} \mid \phi_{H 3_{1 s}}\right\rangle=0.0573208 \\
\left\langle\phi_{N_{2 s}} \mid \phi_{H 1_{1 s}}\right\rangle=\left\langle\phi_{N_{2 s}} \mid \phi_{H 2_{1 s}}\right\rangle=\left\langle\phi_{N_{2 s}} \mid \phi_{H 3_{1 s}}\right\rangle=0.489927 \\
\left\langle\phi_{N_{2 p_{z}}} \mid \phi_{H 1_{1 s}}\right\rangle=\left\langle\phi_{N_{2 p_{z}}} \mid \phi_{H 2_{1 s}}\right\rangle=\left\langle\phi_{N_{2 p_{z}}} \mid \phi_{H 3_{1 s}}\right\rangle=-0.145649 \\
\left\langle\phi_{H_{1 s}} \mid \phi_{H 2_{1 s}}\right\rangle=\left\langle\phi_{H 1_{1 s}} \mid \phi_{H 3_{1 s}}\right\rangle=\left\langle\phi_{H 2_{1 s}} \mid \phi_{H 3_{1 s}}\right\rangle=0.201445 \\
\left\langle\phi_{N_{2 p_{y}}} \mid \phi_{H 2_{1 s}}\right\rangle=\left\langle\phi_{N_{2 p_{y}}} \mid \phi_{H 3_{1 s}}\right\rangle=-0.205978 \\
\left\langle\phi_{N_{2 p_{x}}} \mid \phi_{H 2_{1 s}}\right\rangle=-\left\langle\phi_{N_{2 p_{x}}} \mid \phi_{H 3_{1 s}}\right\rangle=0.356765
\end{gathered}
$$

4. (a) Construct the Hückel secular determinantal equation for benzene. Then calculate the energy values for all the levels.
(Hint: The six roots for the equation $x^{6}-6 x^{4}+9 x^{4}-4=0$ are $x= \pm 1, \pm 1, \pm 2$).
(b) Also explain why benzene is more stable than three ethene molecules? Quantify the amount of delocalization energy.
5. (a) Derive how the expectation values of kinetic energy and electron-electron interaction energy vary with the coordinate scaling factor λ.
(b) Suppose kinetic energy is expressed in terms of density as follows $T[\rho]=\int\left|\delta \rho^{1 / 2} / \delta r\right|^{2} d r$. Then show how does it vary with λ ?
6. The $U(R)$ curve for a repulsive electronic-state of a diatomic molecule can be approximated by the function $a e^{-b R}-c$, where a, b , and c are positive constants with $a>c$. (Note:This function omits the Van der Waals minimum and fails to go to infinity at R $=0$.) Sketch $U,\left\langle T_{e l}\right\rangle$, and $\langle V\rangle$ as functions of R for this function. $\left(V=V_{e l}+V_{n n}\right)$.
