MEST - Assignment 1

(For each solution, show your work through a set of important steps)

Operation Complexity

1. For an array containing N integers, derive the number of operations required to a) obtain the maximum value in the array.
b) sort the integers in a descending pattern. $(2+2 \mathrm{pts})$
2. Hartree-Fock (HF) is one of the methods to calculate total energy of the molecule. The HF energy expression is:

$$
\begin{gathered}
E^{H F}=\sum_{i}^{N_{o c c}} \int \chi_{i}\left(x_{i}\right) \hat{h} \chi_{i}\left(x_{i}\right) d x_{i}+\frac{1}{2} \sum_{i=1}^{N_{o c c}} \sum_{j=1}^{N_{o c c}} \int d x_{i} x_{j} \chi_{i}\left(x_{i}\right) \chi_{j}\left(x_{j}\right) \frac{1}{\hat{r}_{12}} \chi_{i}\left(x_{i}\right) \chi_{j}\left(x_{j}\right) \\
-\frac{1}{2} \sum_{i=1}^{N_{o c c}} \sum_{j=1}^{N_{o c c}} \int d x_{i} x_{j} \chi_{i}\left(x_{i}\right) \chi_{j}\left(x_{j}\right) \frac{1}{\hat{r}_{12}} \chi_{i}\left(x_{j}\right) \chi_{j}\left(x_{i}\right)
\end{gathered}
$$

Where, $\chi(x)$ are the space-spin molecular orbitals with space-spin coordinate x, \hat{h} is one electron Hamiltonian and \hat{r} is the interelectron distance and $N_{o c c}$ denotes the occupied molecular orbitals respectively. Suppose we have a $\mathrm{H}_{2} \mathrm{O}$ molecule with a total of 10 space-spin molecular orbitals.
(a) Calculate number of one electron and two electron integrals required to compute HF energy of a single $\mathrm{H}_{2} \mathrm{O}$ molecule. (3 pts)
(b) If each one-electron and two-electron integral require 5 and 10 floating point operations respectively, and a given processor can do 45 giga floating point operations per second (45 GFLOPS), then calculate the time required to compute HartreeFock energy of (3 pts)
i. a single $\mathrm{H}_{2} \mathrm{O}$ molecule
ii. $\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ cluster
iii. $\left(\mathrm{H}_{2} \mathrm{O}\right)_{N}$ cluster

Spin, Spin matrices, Pauli exclusion prinicple

1. Discuss the experimental setup for a Stern-Gerlach experiment. Why does the beam consisting of neutral (e.g. Ag) atoms is split into different beams? (3 pts)
2. Prove the following relations $(1+1+1+1+1 \mathrm{pts})$:
(a) $S_{+} S_{-}=S^{2}-S_{z}^{2}+S_{z}$
(b) $S_{-} S_{+}=S^{2}-S_{z}^{2}-S_{z}$
(c) $\left[S_{+}, S_{z}\right]=-S_{+}$
(d) $\left[S_{-}, S_{z}\right]=S_{-}$
(e) $\left\{\sigma_{i}, \sigma_{j}\right\}=2 \delta_{i j}$
3. An electron is in the spin state

$$
A=\left[\begin{array}{c}
-8 i \\
15
\end{array}\right]
$$

(a) Find the expectation values of $S^{2}, S_{z}, S_{+}, S_{-}, S_{x}, S_{y}$ operators. (3 pts)
(b) Find the root-mean-square deviations $\Delta S_{z}, \Delta S_{x}, \Delta S_{y}$. (3 pts)
4. Derive the S_{+}and S_{-}operator matrices for a spin- $1 / 2\left(m_{s}=-1 / 2,1 / 2\right)$ system. (2 pts)
5. Derive the $S^{2}, S_{z}, S_{+}, S_{-}, S_{x}, S_{y}$ operator matrices for a spin-1 ($m_{s}=-1,0,1$) system for which the spin states are given by (6 pts)

$$
a=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], b=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] c=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

