Symmetry in Chemistry - Assignment 2

Due Date: May 9th, 2021

(For each solution, show your work through a set of important steps)

- 1. Identify the point group of the following molecules:
 - (a) 1,3-Dichlorobenzene
 - (b) 1,3-Dichloroallene
 - (c) Cyclo-octasulfur
 - (d) Ferrocene (staggered)
 - (e) Ferrocene (eclipsed)

For each case, discuss if the molecule has a dipole moment. (5 pts)

- 2. Derive the group multiplication table for C_{3v} point group.(3 pts)
- 3. How does the point group of an octahedral complex ML_6 change when:

- (a) the bonds $M L_5$ and $M L_6$ are equally stretched out?
- (b) the bond angle L_1ML_2 is reduced to 45° ?
- (c) the bond angles L_1ML_2 and L_3ML_4 , both are reduced to 45° ? (3 pts)
- 4. Show that in a group \mathbb{G} , if g_1 is conjugate with g_2 and g_3 , then g_2 and g_3 are conjugate with each other. (You can refer to the textbook by F. A. Cotton Sec. 2.4) (2 pts)
- 5. \mathbb{G} is a group under a binary operation * and $g_1, g_2, e \in \mathbb{G}$. Prove the following:
 - (a) If $g_1 * g_2 = e$, then $g_2 * g_1 = e$. (In general, \mathbb{G} can be non-commutative, i.e., g_1 and g_2 may not commute. e is the identity element in the group.)

- (b) $(g_1 * g_2)^{-1} = g_2^{-1} * g_1^{-1}$ (2 pts)
- 6. Identify the 2D plane group of graphene and *h*-BN layers. Also, for each case, identify the lattice points, at least two primitive unit cells, and the point group at the lattice points. (3 pts)
- 7. Solve Q11.3 from Cotton. In addition, for each pattern, identify the repeating unit, the type of unit cell and the asymmetric unit. (9 pts)
- 8. The 2D hexagonal lattice has a C_6 axis at each lattice point. Starting with a C_6 axis and translational symmetry operations, derive other unique symmetry axis within the unit cell. (3 pts)