Symmetry in Chemistry - Assignment 2

Due Date: May 9th, 2021
(For each solution, show your work through a set of important steps)

1. Identify the point group of the following molecules:
(a) 1,3-Dichlorobenzene
(b) 1,3-Dichloroallene
(c) Cyclo-octasulfur
(d) Ferrocene (staggered)
(e) Ferrocene (eclipsed)

For each case, discuss if the molecule has a dipole moment. (5 pts)
2. Derive the group multiplication table for $\mathrm{C}_{3 v}$ point group. (3 pts)
3. How does the point group of an octahedral complex ML_{6} change when:

(a) the bonds $\mathrm{M}-\mathrm{L}_{5}$ and $\mathrm{M}-\mathrm{L}_{6}$ are equally stretched out?
(b) the bond angle $\mathrm{L}_{1} \mathrm{ML}_{2}$ is reduced to 45° ?
(c) the bond angles $\mathrm{L}_{1} \mathrm{ML}_{2}$ and $\mathrm{L}_{3} \mathrm{ML}_{4}$, both are reduced to 45° ? (3 pts)
4. Show that in a group \mathbb{G}, if g_{1} is conjugate with g_{2} and g_{3}, then g_{2} and g_{3} are conjugate with each other. (You can refer to the textbook by F. A. Cotton Sec. 2.4) (2 pts)
5. \mathbb{G} is a group under a binary operation $*$ and $g_{1}, g_{2}, e \in \mathbb{G}$. Prove the following:
(a) If $g_{1} * g_{2}=e$, then $g_{2} * g_{1}=e$. (In general, \mathbb{G} can be non-commutative ,i.e., g_{1} and g_{2} may not commute. e is the identity element in the group.)
(b) $\left(g_{1} * g_{2}\right)^{-1}=g_{2}^{-1} * g_{1}^{-1}(2 \mathrm{pts})$
6. Identify the 2 D plane group of graphene and h-BN layers. Also, for each case, identify the lattice points, at least two primitive unit cells, and the point group at the lattice points. (3 pts)
7. Solve Q11.3 from Cotton. In addition, for each pattern, identify the repeating unit, the type of unit cell and the asymmetric unit. (9 pts)
8. The 2D hexagonal lattice has a C_{6} axis at each lattice point. Starting with a C_{6} axis and translational symmetry operations, derive other unique symmetry axis within the unit cell. (3 pts)

